2024

  1. GW230529_181500: A potential primordial binary black hole merger in the mass gap, Qing-Guo Huang, Chen Yuan, Zu-Cheng Chen and Lang Liu, arXiv:2404.05691
  2. Primordial black hole interpretation in subsolar mass gravitational wave candidate SSM200308, Chen Yuan and Qing-Guo Huang, arXiv:2404.03328

 

2023

  1. Probing ultralight tensor dark matter with the stochastic gravitational-wave background from advanced LIGO and Virgo's first three observing runs, Rong-Zhen Guo, Yang Jiang and Qing-Guo Huang, arXiv:2312.16435
  2. Cosmological constraints on neutrino mass within consistent cosmological models, Ye-Huang Pang, Xue Zhang and Qing-Guo Huang, arXiv:2312.07188
  3. Search for non-tensorial gravitational-wave backgrounds in the NANOGrav 15-year data set, Zu-Cheng Chen, Yu-Mei Wu, Yan-Chen Bi and Qing-Guo Huang, arXiv:2310.11238
  4. Constraints on the velocity of gravitational waves from NANOGrav 15-year data set, Yan-Chen Bi, Yu-Mei Wu, Zu-Cheng Chen and Qing-Guo Huang, arXiv:2310.08366
  5. Constraining the Graviton mass with the NANOGrav 15-year data set, Yu-Mei Wu, Zu-Cheng Chen, Yan-Chen Bi and Qing-Guo Huang, Class.Quant.Grav. 41(2024)7, 075002, arXiv:2310.07469
  6. Prospects for Taiji to detect a gravitational-wave background from cosmic strings, Zu-Cheng Chen, Qing-Guo Huang, Chang Liu, Lang Liu, Xiao-Jin Liu, You Wu, Yu-Mei Wu, Zhu Yi and Zhi-Qiang You, arXiv:2310.00411
  7. Impacts of gravitational-wave background from supermassive black hole binaries on the detection of compact binaries by LISA, Fan Huang, Yan-Chen Bi, Zhoujian Cao and Qing-Guo Huang, arXiv:2309.14045
  8. Full analysis of the scalar-induced gravitational waves for the curvature perturbation with local-type non-Gaussianities, Chen Yuan, De-Shuang Meng and Qing-Guo Huang, JCAP 12(2023)036, arXiv:2308.07155
  9. Probing the equation of state of the early Universe with pulsar timing arrrays, Lang Liu, Zu-Cheng Chen and Qing-Guo Huang, JCAP 11(2023)071, arXiv:2307.14911
  10. Cosmological interpretation for the stochastic signal in Pulsar Timing Arrays, Yu-Mei Wu, Zu-Cheng Chen and Qing-Guo Huang, arXiv:2307.03141
  11. Implications for the non-Gaussianity of curvature perturbation from pulsar timing array, Lang Liu, Zu-Cheng Chen and Qing-Guo Huang, Phys.Rev.D 109(2024)6, L061301, arXiv:2307.01102
  12. Implications for the Supermassive Black Hole Binaries from the NANOGrav 15-year data set, Yan-Chen Bi, Yu-Mei Wu, Zu-Cheng Chen and Qing-Guo Huang, SCPMA 66(2023)12, 120402, arXiv:2307.00722
  13. Pulsar timing residual induced by ultralight tensor dark matter, Yu-Mei Wu, Zu-Cheng Chen and Qing-Guo Huang, JCAP 09(2023)021, arXiv:2305.08091
  14. Search for stochastic gravitational-wave background from string cosmology with Advanced LIGO and Virgo's O1~O3 data, Yang Jiang, Xi-Long Fan and Qing-Guo Huang, JCAP 04(2023)024, arXiv:2302.03846
  15. Search for stochastic gravitational-wave background from massive gravity in the NANOGrav 12.5-year data set, Yu-Mei Wu, Zu-Cheng Chen and Qing-Guo Huang, Phys.Rev.D 107(2023)4, 042003, arXiv:2302.00229
  16. On the interaction between ultralight bosons and quantum-corrected black holes, Rong-Zhen Guo, Chen Yuan and Qing-Guo Huang, JCAP 04(2023)069, arXiv:2301.06840

 

2022

  1. Primordial black holes generated by the non-minimal spectator field, De-Shuang Meng, Chen Yuan and Qing-Guo Huang, SCPMA 66(2023)8, 280411, arXiv:2212.03577
  2. Upper limits on the polarized isotropic stochastic gravitational-wave background from advanced LIGO-Virgo's first three observing runs, Yang Jiang and Qing-Guo Huang, JCAP 02(2023)026, arXiv:2210.09952
  3. Constraining ultralight vector dark matter with the Parkes Pulsar Timing Array secondd data release, Yu-Mei Wu, Zu-Cheng Chen, Qing-Guo Huang, Xinjiang Zhu, N.D. Ramesh Bhat, Yi Feng, George Hobbs, Richard N. Manchester, Christopher J. Russell, and R.M. Shannon, Phys.Rev.D 106(2022)8, L081101, arXiv:2210.03880
  4. Implications for cosmic domain walls from LIGO-Virgo first three observing runs, Yang Jiang and Qing-Guo Huang, Phys.Rev.D 106(2022)10, 103036, arXiv:2208.00697
  5. One-loop correction to the enhanced curvature perturbation with local-type non-Gaussianity for the formation of primordial black hole, De-Shuang Meng, Chen Yuan and Qing-Guo Huang, Phys.Rev.D 106(2022)6, 063508, arXiv:2207.07668
  6. The shadow of supertranslated Schwarzschild black hole, Qing-Hua Zhu, Yu-Xuan Han and Qing-Guo Huang, EPJC 83(2023)1, 88,  arXiv:2205.14554
  7. Constraints on Primordial-black-hole population and cosmic expansion history from GWTC-3, Zu-Cheng Chen, Shen-Shi Du, Qing-Guo Huang and Zhi-Qiang You, JCAP 03(2023)024, arXiv:2205.11278
  8. Search for the Gravitational-wave background from cosmic strings with the Parkes Pulsar Timing Array second data release, Zu-Cheng Chen, Yu-Mei Wu and Qing-Guo Huang, Astrophys.J 936(2022)1, 20, arXiv:2205.07194
  9. Constraints on the ultralight scalar boson from Advanced LIGO and Advanced Virgo's first three observing runs using the stochastic gravitational-wave background, Chen Yuan, Yang Jiang and Qing-Guo Huang, Phys.Rev.D 106(2022)2, 023020, arXiv:2204.03482
  10. Constraining the gravitational-wave spectrum from cosmological first-order phase transitions using data from LIGO-Virgo's first three observing runs, Yang Jiang and Qing-Guo Huang, JCAP 06(2023)053, arXiv:2203.11781

 

2021

  1. Near-horizon microstructure and superradiant instability of black holes, Rong-Zhen Guo, Chen Yuan and Qing-Guo Huang, Phys.Rev.D 105(2022)6, 064029, arXiv:2109.03376
  2. Searching for isotropic stochastic gravitational-wave background in the international Pulsar Timing Array second data release, Zu-Cheng Chen, Yu-Mei Wu and Qing-Guo Huang, Commun.Theor.Phys. 74(2022)10, 105402, arXiv:2109.00296
  3. Confronting the primordial black hole scenario with the gravitational-wave events detected by LIGO-Virgo, Zu-Cheng Chen, Chen Yuan and Qing-Guo Huang, Phys.Lett.B 829(2022)137040, arXiv:2108.11740
  4. Constraining the polarization of gravitational waves with the Parkes Pulsar Timing Array second data release, Yu-Mei Wu, Zu-Cheng Chen and Qing-Guo Huang, Astrophys.J 925(2022)1, 37,  arXiv:2108.10518
  5. Tests for the existence of horizon through gravitational waves from a small binary in the vicinity of a massive object, Phys.Lett.B 822(2021)136654, arXiv:2108.04511
  6. Parameterized second post-Newtonian framework with conservation laws, Yu-Mei Wu and Qing-Guo Huang, Phys.Rev.D 104(2021)6, 064050, arXiv:2103.08080
  7. A topic review on probing primordial black hole dark matter with scalar induced gravitational waves, Chen Yuan and Qing-Guo Huang, iScience 24, 102860,  arXiv:2103.04739
  8. Gravitational waves from preheating with modified gravitational-wave propagation, Ke Wang and Qing-Guo Huang, arXiv:2102.03084
  9. Non-tensorial gravitational wave background in NANOGrav 12.5-year data set, Zu-Cheng Chen, Chen Yuan and Qing-Guo Huang, Sci.China Phys.Mech.Astron. 64(2021)12, 120412, arXiv:2101.06869

 

2020

  1. Oscillons during Dirac-Born-Infeld preheating, Yu Sang and Qing-Guo Huang, Phys.Lett.B 823(2021)136781, arXiv:2012.14697
  2. Gravitational waves induced by the local-type non-Gaussian curvature perturbations, Chen Yuan and Qing-Guo Huang, Phys.Lett.B 821(2021)136606, arXiv:2007.10686
  3. The Hubble constant and sound horizon from the late-time Universe, Xue Zhang and Qing-Guo Huang, Phys.Rev.D 103(2021)4, 043513, arXiv:2006.16692
  4. The three body first post-Newtonian effects on the secular dynamics of a compact binary near a spinning supermassive black hole, Yun Fang and Qing-Guo Huang, Phys.Rev.D 102(2020)10, 104002, arXiv:2004.09390

 

2019

  1. Implications for cosmology from ground-based cosmic microwave background observations, Ke Wang and Qing-Guo Huang, JCAP 06(2020)045, arXiv:1912.05491
  2. Scalar induced gravitational waves in different gauges, Chen Yuan, Zu-Cheng Chen and Qing-Guo Huang, Phys.Rev.D 101(2020)6, 063018, arXiv:1912.00885
  3. Extract of gravitational wave signals with optimized convolutional neural network, Hua-Mei Luo, Wenbin Lin, Zu-Cheng Chen and Qing-Guo Huang, Front.Phys.(Beijing) 15(2020)no.1, 14601
  4. Pulsar Timing Array constraints on primordial black holes with NANOGrav 11-year data set, Zu-Cheng Chen, Chen Yuan and Qing-Guo Huang, Phys.Rev.Lett. 124(2020)251101, arXiv:1910.12239
  5. Log-dependent slope of scalar induced gravitational waves in the infrared regions, Chen Yuan, Zu-Cheng Chen and Qing-Guo Huang, Phys.Rev.D 101(2020)4, 043019arXiv:1910.09099
  6. Searching for primordial black holes with stochastic gravitational-wave background in the space-based detector frequency band, Yi-Fan Wang, Qing-Guo Huang, Tjonnie G.F. Li, Shihong Liao, Phys.Rev.D 101(2020)6, 063019, arXiv:1910.07397
  7. Impact of a spinning supermassive black hole on the orbit and gravitational waves of a nearby compact binary, Yun Fang, Xian Chen and Qing-Guo Huang, ApJ 887(2), 210, arXiv:1908.01443
  8. Measuring the tilt of primordial gravitational-wave power spectrum from observations, Jun Li, Zu-Cheng Chen and Qing-Guo Huang, SCPMA 62(2019)no.11, 110421, arXiv:1907.09794
  9. Probing primordial-black-hole dark matter with scalar induced gravitational waves, Chen Yuan, Zu-Cheng Chen and Qing-Guo Huang, Phys.Rev.D 100(2019)8, 081301(R), arXiv:1906.11549
  10. Inflation model selection revisited, Jun Li and Qing-Guo Huang, SCPMA 62(2019)no.12, 120412, arXiv:1906.01336
  11. Stochastic Gravitational-Wave Background from axion-monodromy oscillons in string theory during preheating, Yu Sang and Qing-Guo Huang, Phys.Rev.D 100(2019)no.6, 063516, arXiv:1905.00371
  12. Distinguishing primordial black holes from astrophysical black holes by Einstein Telescope and Cosmic Explorer, Zu-Cheng Chen and Qing-Guo Huang, JCAP 08(2020)039, arXiv:1904.02396
  13. The redshift dependence of Alcock-Paczynski effect: cosmological constraints from the current and next generation observations, Xiao-Dong Li, Haitao Miao, Xin Wang, Xue Zhang, Feng Fang, Xiaolin Luo, Qing-Guo Huang and Miao Li, ApJ 875(2019)no.2, 92, arXiv:1903.04757
  14. Low-redshift constraints on the Hubble constant from the baryon acoustic oscillation "standard rulers" and the gravitational wave "standard sirens", Zhe Chang, Qing-Guo Huang, Sai Wang and Zhi-Chao Zhao, EPJC 79(2019)177
  15. Secular evolution of compact binaries revolving around a spinning massive black hole, Yun Fang and Qing-Guo Huang, Phys.Rev.D 99(2019)103005, arXiv:1901.05591

 

2018

  1. Constraints on H0 from WMAP and baryon acoustic osillation measurements, Xue Zhang and Qing-Guo Huang, Commun.Theor.Phys. 71(2019)no.7, 826-830, arXiv:1812.01877
  2. Stochastic Gravitational-Wave Background from binary black holes and binary neutron stars, Zu-Cheng Chen, Fan Huang and Qing-Guo Huang, ApJ 871(2019)97, arXiv:1809.10360
  3. Distance priors from Planck final release, Lu Chen, Qing-Guo Huang and Ke Wang, JCAP 1902(2019)028, arXiv:1808.05724
  4. Measuring the spectral running from cosmic microwave background and primordial black holes, Jun Li and Qing-Guo Huang, EPJC 78(2018)980,  arXiv:1806.01440
  5. Merger rate distribution of primordial-black-hole binaries, Zu-Cheng Chen, Qing-Guo Huang, ApJ 864(2018)61, arXiv:1801.10327
  6. Tight H0 constraint from galaxy redshift surveys: combining baryon acoustic osillation measurements and Alcock-Paczynski test, Xue Zhang, Qing-Guo Huang and Xiao-Dong Li, MNRAS 483(2019)1655, arXiv:1801.07403
  7. Super-Eddington accreting massive black holes explore high-z cosmology: Monte-Carlo simulations, Rong-Gen Cai, Zong-Kuan Guo, Qing-Guo Huang, Tao Yang, Phys.Rev.D 97(2018)123502, arXiv:1801.00604

 

2017

  1. Scalaron from R2-gravity as a heavy field, Shi Pi, Ying-Li Zhang, Qing-Guo Huang and Misao Sasaki, JCAP 1805(2018)042, arXiv:1712.09896
  2. Signatures of modified dispersion relation of graviton in the cosmic microwave background, Jun Li and Qing-Guo Huang, JCAP 1802(2018)020, arXiv:1712.07771
  3. New cosmological constraints with extended-Baryon Oscillation Spectroscopic Survey DR14 quasar sample, Lu Chen, Qing-Guo Huang and Ke Wang, EPJC 77(2017)762, arXiv:1707.02742
  4. Effect of the early reionization on the Cosmic Microwave Background and cosmological parameter estimates, Qing-Guo Huang and Ke Wang, JCAP 07(2017)042, arXiv:1704.08495
  5. Optimistic estimation on probing primordial gravitational waves with CMB B-mode polarization, Qing-Guo Huang and Sai Wang, MNRAS 483(2019)2177, arXiv:1701.06115

 

2016

  1. Detecting the neutrino mass hierarchy from cosmological data, Lixin Xu and Qing-Guo Huang, SCPMA 61(2018)039521, arXiv:1611.05178
  2. Constraints on the primordial black hole abundance from the first avanced LIGO observation run using the stochastic gravitational-wave background, Sai Wang, Yi-Fan Wang, Qing-Guo Huang and Tjonnie G.F. Li, Phys.Rev.Lett. 120(2018)191102, arXiv:1610.08725
  3. Power-law modulation of the scalar power spectrum from a heavy field with a monomial potential, Qing-Guo Huang and Shi Pi, JCAP 1804(2018)001, arXiv:1610.00115
  4. Constraint on the abundance of primordial black holes in dark matter from Planck data, Lu Chen, Qing-Guo Huang and Ke Wang, JCAP 1612(2016)044, arXiv:1608.02174
  5. How the dark energy can reconcile Planck with local determination of the Hubble constant, Qing-Guo Huang and Ke Wang, EPJC 76(2016)506, arXiv:1606.05965

 

2015

  1. The inflation models 2015, Qing-Guo Huang, Ke Wang and Sai Wang, Phys.Rev.D 93(2016)103516, arXiv:1512.07769
  2. Constraints on the neutrino mass and mass hierarchy from cosmological observations, Qing-Guo Huang, Ke Wang and Sai Wang, EPJC 76(2016)489, arXiv:1512:05899
  3. Preferred axis of CMB parity asymmetry in the masked maps, Cheng Cheng, Wen Zhao and Qing-Guo Huang, Phys.Lett.B 757(2016)445, arXiv:1512.00591
  4. Forecasting sensitivity on tilt of power spectrum of primordial gravitational waves after Planck satellite, Qing-Guo Huang, Sai Wang and Wen Zhao, JCAP 10(2015)035, arXiv:1509.02676
  5. Distance priors from Planck 2015 data, Qing-Guo Huang, Ke Wang and Sai Wang, JCAP 12(2015)022, arXiv:1509.00969
  6. On the uniqueness of the non-minimal matter coupling in massive gravity and bigravity, Qing-Guo Huang, Raquel H. Ribeiro, Yu-Hang Xing, Ke-Chao Zhang and Shuang-Yong Zhou, Phys.Lett.B 748(2015)356, arXiv:1505.02616
  7. Lyth bound revisited, Qing-Guo Huang, Phys.Rev.D 91(2015)123532, arXiv:1503.04513
  8. No evidence for the blue-tilted power spectrum of relic gravitational waves, Qing-Guo Huang and Sai Wang, JCAP 06(2015)021, arXiv:1502.02541
  9. The four-point correlation function of graviton during inflation, Tian-Fu Fu and Qing-Guo Huang, JHEP 07(2015)132, arXiv:1502.02329

 

2014

  1. Constraint on the primordial gravitational waves from the joint analysis of BICEP2 and Planck HFI 353 GHz dust polarization data, Cheng Cheng, Qing-Guo Huang and Sai Wang, JCAP 12(2014)044, arXiv:1409.7025
  2. An accurate determination of the Hubble constant from Baryon Acoustic Oscillation datasets, Cheng Cheng and Qing-Guo Huang, Sci.China Phys.Mech.Astron. 58(2015)599801, arXiv:1409.6119
  3. The (p,q) inflation model, Qing-Guo Huang, Sci.China Phys.Mech.Astron. 58(2015)110401, arXiv:1407.4639
  4. Probing the primordial Universe from the low-multipole CMB data, Cheng Cheng and Qing-Guo Huang, Phys.Lett.B 738(2014)140, arXiv:1405.0349
  5. Constraints on the extensions to the base $\Lambda$CDM model from BICEP2, Planck and WMAP, Cheng Cheng, Qing-Guo Huang and Wen Zhao, Sci.China Phys.Mech.Astron. 57(2014)1460, arXiv:1404.3467
  6. Constraints on inflation model from BICEP2 and WMAP 9-year data, Cheng Cheng and Qing-Guo Huang, IJMPD 24 (2014)1541001, arXiv:1404.1230
  7. Constraints on the cosmological parameters from BICEP2, Planck and WMAP, Cheng Cheng and Qing-Guo Huang, EPJC 74(2014)3139, arXiv:1403.7173
  8. The tilt of primordial gravitational waves spectra from BICEP2, Cheng Cheng and Qing-Guo Huang, MPLA 29(2014)1450185, arXiv:1403.5463
  9. Hint of relic gravitational waves in the Planck and WMAP data, Wen Zhao, Cheng Cheng and Qing-Guo Huang, arXiv:1403.3919
  10. An analytic calculation of the growth index for f(R) dark energy model, Qing-Guo Huang, EPJC 74(2014)2964, arXiv:1403.0655

 

2013

  1. A polynomial f(R) inflation model, Qing-Guo Huang, JCAP 1402(2014)035, arXiv:1309.3514
  2. Generalized massive gravity in arbitrary dimensions and its Hamiltonian formulation, Qing-Guo Huang, Ke-Chao Zhang and Shuang-Yong Zhou, JCAP 1308(2013)050, arXiv:1306.4740
  3. Dark side of the Universe after Planck data, Cheng Cheng and Qing-Guo Huang, Phys.Rev.D 89(2014)043003, arXiv:1306.4091
  4. Confronting brane inflation with Planck and pre-Planck data, Yin-Zhe Ma, Qing-Guo Huang and Xin Zhang, Phys.Rev.D 87(2013)103516, arXiv:1303.6244
  5. g_NL in the curvaton model constrained by Planck, Qing-Guo Huang, JCAP 1305(2013)030, arXiv:1303.6084
  6. Large local non-Gaussianity from general single-field inflation, Qing-Guo Huang and Yi Wang, JCAP 1306(2013)035, arXiv:1303.4526
  7. Constraints on single-field inflation with WMAP, SPT and ACT data - a last-minute stand before Planck, Cheng Cheng, Qing-Guo Huang and Yin-Zhe Ma, JCAP 1307(2013)018, arXiv:1303.4497

 

2012

  1. The trouble with asymptotically safe inflation, Chao Fang and Qing-Guo Huang, EPJC 73(2013)2401, arXiv:1210.7596
  2. Can the standard model Higgs boson seed the formation of structures in our Universe, Ki-Young Choi and Qing-Guo Huang, Phys.Rev.D 87(2013)043501, arXiv:1209.2277
  3. Cosmological interpretations of consistency relation of inflation models with current CMB data, Cheng Cheng, Qing-Guo Huang, Xiao-Dong Li and Yin-Zhe Ma, Phys.Rev.D 86(2012)123512, arXiv:1207.6113
  4. Mass-varying massive gravity, Qing-Guo Huang, Yun-Song Piao and Shuang-Yong Zhou, Phys.Rev.D 86(2012)124014, arXiv:1206.5678
  5. Cosmological constraints on Lorentz invariance violation in the neutrino sector, Zong-Kuan Guo, Qing-Guo Huang, Rong-Gen Cai and Yuan-Zhong Zhang, Phys.Rev.D 86(2012)065004, arXiv:1206.5588
  6. Dark energy and fate of the Universe, Xiao-Dong Li, Shuang Wang, Qing-Guo Huang, Xin Zhang and Miao Li, Sci.China Phys.Mech.Astron. G 55(2012)1330
  7. Testing modified gravity models with recent cosmological observations, Wen-Shuai Zhang, Cheng Cheng, Qing-Guo Huang, Miao Li, Song Li, Xiao-Dong Li and Shuang Wang, Sci.China Phys.Mech.Astron. 55(2012)2244
  8. Cosmological constant, inflation and no-cloning theorem, Phys.Lett.B 712(2012)143

 

2011

 

Qing-Guo Huang (Professor)

 

Coordinates:

Tel(O): 86-10-62551786

Fax: 86-10-62562587

Email: huangqg<AT>itp.ac.cn

Affiliation: Institute of theoretical physics, Chinese Academy of Sciences

Address: Zhong Guan Cun East Street 55#, P.O.Box 2735, Beijing, 100190, China